Functions of perturbed commuting dissipative operators
نویسندگان
چکیده
Abstract The main objective of the paper is to obtain sharp Lipschitz type estimates for norm operator differences pairs and commuting maximal dissipative operators. To such estimates, we use double integrals with respect semi‐spectral measures associated . Note that situation considerably more complicated than in case functions two contractions overcome difficulties had elaborate new techniques. We deduce from result Hölder as well their Schatten–von Neumann norms.
منابع مشابه
Lipschitz Functions of Perturbed Operators
We prove that if f is a Lipschitz function on R, A and B are self-adjoint operators such that rank(A − B) = 1, then f(A) − f(B) belongs to the weak space S1,∞, i.e., sj(A − B) ≤ const(1 + j). We deduce from this result that if A − B belongs to the trace class S1 and f is Lipschitz, then f(A) − f(B) ∈ SΩ, i.e., Pn j=0 sj(f(A) − f(B)) ≤ const log(2 + n). We also obtain more general results about ...
متن کاملFunctions of Perturbed Noncommuting Self-adjoint Operators
Abstract. We consider functions f(A,B) of noncommuting self-adjoint operators A and B that can be defined in terms of double operator integrals. We prove that if f belongs to the Besov class B ∞,1 (R), then we have the following Lipschitz type estimate in the trace norm: ‖f(A1, B1)− f(A2, B2)‖S1 ≤ const(‖A1 −A2‖S1 + ‖B1 −B2‖S1). However, the condition f ∈ B ∞,1 (R) does not imply the Lipschitz ...
متن کاملFunctions of Perturbed Tuples of Self-adjoint Operators
Abstract. We generalize earlier results of [2], [3], [6], [13], [14] to the case of functions of n-tuples of commuting self-adjoint operators. In particular, we prove that if a function f belongs to the Besov space B ∞,1(R ), then f is operator Lipschitz and we show that if f satisfies a Hölder condition of order α, then ‖f(A1 · · · , An)− f(B1, · · · , Bn)‖ ≤ constmax1≤j≤n ‖Aj −Bj‖ α for all n...
متن کاملOn Commuting Differential Operators
The theory of commuting linear differential expressions has received a lot of attention since Lax presented his description of the KdV hierarchy by Lax pairs (P,L). Gesztesy and the present author have established a relationship of this circle of ideas with the property that all solutions of the differential equations Ly = zy, z ∈ C, are meromorphic. In this paper this relationship is explored ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2022
ISSN: ['1522-2616', '0025-584X']
DOI: https://doi.org/10.1002/mana.202000239